Lösung der Sonderaufgabe vom 21.10.2004 Studiengang Network Computing WS 2004/2005

Martin Grandrath (Matr. Nr.: 46375)

12. Dezember 2004

Inhaltsverzeichnis

1	Beh	auptung	2
2	Ver	mutung	2
3	Prü	fen, ob p existiert	2
4	Bev	veis	3
	4.1	Vollständige Induktion	3
		4.1.1 Induktionsanfänge	3
		4.1.2 Induktionsschluss	3
	4.2	Bestimmen von x_a	3
	4.3	Bestimmen von y_a	4
		4.3.1 y_a nach oben abschätzen	4
		$4.3.2$ y_a nach unten abschätzen	4
		4.3.3 Untersuchen von y_k	5
		4.3.4 Zusammenfassung	5
	4.4	Bestimmen von p	5

1 Behauptung

Gegeben seien die Zahlen a,b,x,y,n mit $a,b,n\in\mathbb{N}^+,\ b>a>1$ und $x,y\in\mathbb{N}_0$. Ferner sei der größte gemeinsame Teiler (ggT) von a und b 1. Dann soll gelten:

$$\exists x \; \exists y \; (ax + by = n, \; \text{für } n \ge n_0)$$
 (1)

Gesucht wird p, d. h. die größte natürliche Zahl, die sich *nicht* in der o.g. Form darstellen lässt. ($\Rightarrow p = n_0 - 1$)

2 Vermutung

$$p = ab - (a+b)$$

3 Prüfen, ob p existiert

Nach dem Euklidischen Algorithmus lässt sich der größte gemeinsame Teiler T zweier Zahlen $a, b \in \mathbb{N}$ in der Form T = aw + bz mit $w, z \in \mathbb{Z}$ darstellen.

Das heißt, dass im konkreten Fall gilt

$$aw + bz = 1$$
 mit $w, z \in \mathbb{Z}$ (2)

und somit auch

$$amw + bmz = m \quad \text{mit } m \in \mathbb{N}$$
 (3)

Da b>a>1 ist, folgt, dass entweder w<0< z oder w>0>z ist. OBdA untersuchen von w<0< z:

$$\underbrace{-a(a-1)w}_{>0} + b \cdot 0z = n$$

Addieren von (3) ergibt:

$$-a(a-1)w + amw + b \cdot 0z + bmz = n + m$$
$$-a(a-1-m)w + b(0+m)z = n + m$$
$$a(m-a+1)w + bmz = n + m$$

Einsetzen der Werte m = 0, $m = 1, \ldots, m = a - 1$ und Substituieren von (m - a + 1)w durch x_{m+1} bzw. mz durch y_{m+1} ergibt die für den Induktionsanfang benötigten Gleichungen.

4 Beweis

4.1 Vollständige Induktion

4.1.1 Induktionsanfänge

$$ax_1 + by_1 = n$$

$$ax_2 + by_2 = n + 1$$

$$ax_3 + by_3 = n + 2$$

$$\vdots$$

$$ax_a + by_a = n + a - 1$$

4.1.2 Induktionsschluss

$$ax + by = n + a$$
$$ax - a + by = n$$
$$a(x - 1) + by = n$$

4.2 Bestimmen von x_a

$$ax_a + by_a = n + a - 1$$
$$ax_a - a + by_a = n - 1$$
$$a(x_a - 1) + by_a = p$$

Aus diesem Widerspruch zur Behauptung folgt:

$$\Rightarrow x_a - 1 \notin \mathbb{N}_0$$
$$\Rightarrow x_a = 0$$

4.3 Bestimmen von y_a

4.3.1 y_a nach oben abschätzen

Annahme

$$y_a > a - 1$$

 $y_a \ge a$
 $y_a = a + \delta$ $(\delta \in \mathbb{N}_0)$

Gegenbeweis

$$by_a = n + a - 1$$
$$b(a + \delta) = n + a - 1$$
$$ba + b\delta = n + a - 1$$
$$ba - a + b\delta = n - 1$$
$$a(b - 1) + b\delta = p$$

Diese Aussage steht im Widerspruch zur Behauptung und muss folglich falsch sein.

$$\Rightarrow y_a \le a - 1$$

4.3.2 y_a nach unten abschätzen

Aus

$$n < n+1 < n+2 < \ldots < n+a-1$$

ergibt sich

$$ax_1 + by_1 < ax_2 + by_2 < ax_3 + by_3 < \dots < by_a$$

daraus folgt

$$\Rightarrow y_a > y_k \qquad (k \in [1, a-1])$$

4.3.3 Untersuchen von y_k

Behauptung

Alle y_k mit $k \in [1, a]$ sind paarweise verschieden.

Beweis

Angenommen,

$$ax_n + by_n = ax_m + by_n + q (q \in [1, a - 1])$$

$$ax_n = ax_m + q$$

$$q = ax_n - ax_m$$

$$q = a(x_n - x_m)$$

Hier liegt ein Widerspruch vor, da q innerhalb des Intervalls [1,a-1] liegen muss und daher kein Vielfaches von a darstellen kann.

4.3.4 Zusammenfassung

Für y_a gilt also

- $y_a \leq a 1$
- $y_a > y_k \ge 0$
- \bullet Alle a Faktoren y_k sind paarweise verschieden

$$\Rightarrow y_a = a - 1$$

4.4 Bestimmen von p

$$ax_a + by_a = n + a - 1$$
 $x_a = 0, y_a = a - 1$
 $b(a - 1) = n + a - 1$
 $n = ab - b - a + 1$
 $n = ab - (a + b) + 1$
 $p = n - 1$
 $p = ab - (a + b)$